Acta Cryst. (1965). 18, 618

The Crystal and Molecular Structure of Bisthiourea-cadmium Formate

BY MARIO NARDELLI, GIOVANNA FAVA GASPARRI AND PIERO BOLDRINI

Structural Chemistry Laboratory, Institute of Chemistry, University of Parma, Italy

(Received 15 May 1964).

Cd[SC(NH₂)₂]₂(HCOO)₂ is an example of sulphur bridging in a coordination compound. The crystals are orthorhombic, $P_{2_12_12}$, with $a=8.00_0$, $b=17.87_8$, $c=3.93_3$ Å, Z=2. The structure was determined and refined by Fourier three-dimensional methods, with photographic data collected around [100] and [001] (Cu K α).

Each Cd coordinates octahedrally four S atoms, lying in a plane with Cd, and two oxygen atoms from two $HCOO^-$ groups, *trans* to the S plane. The octahedra are linked in chains running along [001], with a twofold axis along the chain, and two S atoms shared by two adjacent octahedra.

Packing and hydrogen bonding are discussed.

Introduction

Sulphur bridging in coordination compounds has been demonstrated by X-ray analysis in a few metal complexes: bisthiourea-nickel (II) thiocyanate (Nardelli, Braibanti & Fava, 1957), bisthiourea-lead (II) chloride (Nardelli & Fava, 1959), tristhiourea-copper (I) chloride (Knobler, Okaya & Pepinsky, 1959), monothiourea-lead (II) acetate (Nardelli, Fava & Branchi-1960), bis-N,N-di-n-propyldithiocarbamate-copper (II) (Peyronel & Pignedoli, 1962). A further example of this behaviour is observed in bisthiourea-cadmium formate, for which crystal data and preliminary results of X-ray analysis have been published already (Nardelli, Fava & Boldrini, 1962). The present paper discusses the structure derived from a three-dimensional anisotropic refinement.

Experimental

Fig. 1. Diagrammatic projection on (001).

Table 1. Final atomic coordinates with their e.s.d.'s and ratios (e.s.d.)/(shift)

	x/a	y/b	z/c	x(Å)	$y(\text{\AA})$	<i>z</i> (Å)	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$	r(x)	r(y)	r(z)
Cd	0	0	0.0970	0	0	0.382		× 10 ⁵ (A	3			26
S	0.1904	0.0622	0.6025	1.523	1.112	2.370	6	6	9	31	16	29
O(1)	-0.1815	0.0969	0.1677	-1.452	1.732	0.660	23	23	36	11	26	12
O(2)	-0.4148	0.1617	0.0896	-3.318	2.891	0.352	25	24	48	25	9	12
N(1)	0.0237	0.1902	0.5579	0.190	3.400	2.194	29	35	38	24	3	42
N(2)	0.2688	0.1968	0.8349	2.150	3.518	3.284	26	23	42	10	9	5
$\mathbf{C}(1)$	0.1577	0.1583	0.6709	1.262	2.830	2.639	23	23	45	227	5	25
C(2)	-0.3349	0.1045	0.0780	-2.679	1.868	0.307	32	31	46	11	9	11

U = 562.5 Å³, Z = 2, $D_x = 2.093$, $D_m = 2.091$ g.cm⁻³ (flotation).

 $\mu = 198.3 \text{ cm}^{-1}$ (Cu K α).

F(000) = 348.

Absent spectra: h00 and 0k0 with h, k odd. Space group: $P2_12_12$ (D_2^3).

Intensities of $hk0, \dots, hk3$ and $0k1, \dots, 6kl$ reflexions were determined photometrically on multiplefilm integrated and non-integrated equiinclination Weissenberg photographs (Cu $K\alpha$).

Correction for absorption: continuous around [001], discontinuous (Albrecht's (1939) method) around [100].

Fig. 2. Clinographic projection of a chain.

Shape of the spots was taken into account following Phillips (1956).

619

Refinement of the structure

The solution of the structure was obtained by means of Fourier methods from hk0 and hk1 data alone, as reported in the previous paper (Nardelli, Fava & Boldrini, 1962). The refinement, started with a threedimensional Fourier synthesis, was followed by two isotropic cycles of $F_o - F_c$ synthesis and finished with four cycles of Booth's differential synthesis, the first with isotropic, the others with anisotropic thermal parameters. These were derived from the second derivatives following the method of Nardelli & Fava (1960).

The ratios (e.s.d.)/(shift) at the end of the refinement were as shown in Table 1. In the same Table the final coordinates with their e.s.d.'s (Cruickshank, 1949) are collected.

The final agreement indices (*R*, for observed reflexions only; *R'* including $F_o = \frac{1}{2}F_{min}$ when $F_c \ge F_{min}$ for unobserved reflexions; multiplicities not considered) and the e.s.d.'s of the electron-density and of its first and second derivatives, are:

$$\begin{array}{cccc} R = 12 \cdot 8\% & R' = 14 \cdot 1\% \\ \sigma(\varrho) = 0 \cdot 95 & \mathrm{e}.\mathrm{\AA}^{-3} \\ \sigma(A_h) = 2 \cdot 7, & \sigma(A_k) = 2 \cdot 7, & \sigma(A_l) = 3 \cdot 4 & \mathrm{e}.\mathrm{\AA}^{-4} \\ \sigma(A_{hh}) = 5 \cdot 4, & \sigma(A_{kk}) = 2 \cdot 1, & \sigma(A_{ll}) = 17 \cdot 3 & \mathrm{e}.\mathrm{\AA}^{-5} \\ \sigma(A_{hk}) = 3 \cdot 1, & \sigma(A_{hl}) = 9 \cdot 1, & \sigma(A_{kl}) = 2 \cdot 0 & \mathrm{e}.\mathrm{\AA}^{-5}. \end{array}$$

The anisotropic thermal parameters at the end of the refinement are quoted in Table 2 and the observed and calculated structure factors are compared in Table 3.

Table	2.	Thermal	parameters	$(Å^2)$
-------	----	---------	------------	---------

	<i>B</i> ₁₁	B ₂₂	B ₃₃	B ₂₃	B ₁₃	B_{12}
Cd	2.51	2.20	2.74	0.00	0.00	0.07
S	2.37	1.65	3.23	-0.13	-0.06	0.31
O(1)	2.59	1.93	5.65	0.24	-0.42	-0.40
O(2)	3.34	2.18	7.64	-0.10	-0.78	0.36
N(1)	3.32	3.65	3.02	-0.44	-0.64	-0.18
N(2)	2.97	2.41	4.82	-0.79	0.92	- 0.49
C(1)	2.03	2.10	4.75	-0.65	-1.02	-0.18
C(2)	3.19	2.54	5.37	-0.09	-0.63	-0.54

The scattering factors used throughout the calculations are those of Thomas & Umeda (1957) for Cd^{2+} , of Dawson (1960) for S and of Berghuis,

STRUCTURE OF BISTHIOUREA-CADMIUM FORMATE

Table 3. Observed and calculated structure factors A minus sign after an F_o means ,less than'.

Table 3 (cont.)

Þ	k	1	107	107	, ۲	Ъ	k	1	10 P	10 P	. «	h	k 1	107	107	, x°	h	k 1	108	10	ູ້	Ъ	k 1	[10 P _]	107	**	h	k 1	10 P 01	107	ຸ້~່
1	8	3	347	409	92	1	2 C	2	198	184	62	1	8 4	179	147	G1	5	04	109	157	90	5	12 3	140	186	87	7	8 2	248	256	87
1	8	é.	99	87	79	1	22	ō	79	81	180	1	10 0	189	146	180	ś	20	18-	. 40	180	ś	14 0	48_	31	0	-	Ă.	60	123	88
1	10	ò	238	220	90	1	22	1	149	166	61	1	10 1	48	23	124	ś	2 1	189	187	121	ś	14 1	79	67	81	7	10 0	79	122	õ
1	10	1	615	471	115	3	0	1	427	488	90	ĩ	10 2	516	491	91	ś	2 2	177	424	91	ś	14 2	278	273	94	7	10.1	155	114	134
1	10	2	407	395	84	3	0	2	139	183	90	ĩ	10 3	129	165	93	5	2 1	140	188	67	ś	14 3	89	107	ć i	7	10 2	189	181	78
1	10	3	248	300	81	3	ò	3	382	462	90	3	10 4	298	168	79	ś	2 4	00	127	96	ś	16 0	43-	- 11	180	7	12 0	145	185	ō
1	10	4	268	139	115	3	с	ā	169	166	90	3	12 0	169	137	180	ś	4 0	42.	41	õ	ś	16 1	39-	29	42	7	12 1	145	141	106
1	12	0	347	343	0	3	2	ò	318	286	0	ŝ	12 1	288	247	69	5	4 1	208	232	121	5	16 2	238	269	88	7	12 2	268	199	90
1	12	1	318	268	126	3	2	1	476	505	79	ŝ	12 2	357	264	102	ś	4 2	258	292	83	5	18 0	35-	15	0	7	14 0	50	77	0
1	12	2	427	322	83	3	2	2	268	294	83	3	12 3	179	226	95	Ś	4 3	198	251	96	Ś	18 1	50	61	78	7	14 1	179	165	116
1	12	3	198	248	75	Ĵ	2	3	397	472	90	3	12 4	13-	108	77	Ś	4 4	89	118	94	7	01	149	167	90	7	14 2	129	123	79
1	12	4	149	115	127	3	2	4	79	93	118	3	14 0	99	56	180	5	60	32-	. 8	180	7	02	179	195	90	7	16 0	26-	6	0
1	14	0	318	305	0	3	- 4	0	129	74	180	3	14 1	298	302	81	5	6 1	298	313	89	7	03	179	226	<u>90</u>	7	16 1	60	124	95
1	14	1	208	187	92	3	- 4	1	476	486	135	3	14 2	159	152	75	5	62	208	251	85	7	20	119	87	180	9	01	169	160	90
1	14	2	367	326	85	3	- 4	2	476	493	82	3	14 3	208	250	90	5	63	278	330	85	7	21	258	291	56	ġ	02	139	136	90
1	14	3	179	219	99	3	- 4	3	258	297	78	3	16 0	48-	14	0	5	64	79	99	102	7	22	149	189	108	9	2 Ü	40-	3	180
1	16	0	119	105	180	3	- 4	4	89	105	100	3	16 1	228	242	93	5	80	228	221	0	7	S 3	179	227	104	9	21	149	126	127
1	16	1	198	173	115	3	6	0	208	167	0	3	16 2	159	150	100	5	8 1	327	337	82	7	4 0	119	51	180	ò	22	119	131	78
1	16	2	347	327	89	3	6	1	298	311	92	3	16 3	198	231	93	5	82	79	86	107	7	4 1	189	221	60	9	4 0	208	168	0
1	16	3	129	148	77	3	6	2	526	561	95	3	18 0	44-	31	0	5	83	268	337	91	7	42	189	222	90	9	41	169	144	134
1	18	σ	179	168	180	3	6	3	139	159	92	3	18 1	238	248	102	5	10 0	99	59	180	7	43	119	170	100	9	42	139	164	79
1	18	1	119	99	71	3	6	4	189	175	100	3	18 2	89	104	88	5	10 1	417	320	89	7	60	218	150	180	9	60	60	68	0
1	18	2	208	215	102	3	8	0	119	101	0	3	20 0	60	90	0	5	10 2	189	186	90	7	61	139	140	53	9	61	149	137	108
1	18	3	79	127	87	3	8	1	198	205	65	3	20 1	109	110	107	5	10 3	189	245	97	7	5 2	308	320	100	9	62	19-	148	88
1	20	0	119	135	180	3	8	2	546	567	86	5	01	198	232	90	5	12 0	248	222	180	7	63	109	143	95	с	8 ^	33-	8	180
1	20	1	159	187	40	3	8	3	149	194	91	- 5	02	556	685	90	5	12 1	228	201	87	7	8 0	238	149	180	9	8 1	79	74	95
												5	03	89	115	90	5	12 2	347	264	93	7	81	169	134	114	9	10 0	50	38	180

Haanappel, Potters, Loopstra, MacGillavry & Veenendaal (1955) for O, N, C.

The comparison between observed and calculated peak heights and curvatures is given in Table 4.

Table 4.	Atomic	peak	heights	(<i>e</i> .Å ⁻³)	and	curvatures
		-	(e.Å⁻₅)			

		ų	$-A_{hh}$	$-\mathbf{A}_{kk}$	$-A_{ll}$	A_{kl}	A_{hl}	A_{hk}
Cd	obs. calc.	134·7 137·5	1398 1421	1468 1455	1301 1354	0 0	0 0	27 9
S	obs. calc.	39∙1 40•1	427 428	441 444	392 396	$-6 \\ -6$	2 6	1 -1
O (1)	obs. calc.	12·2 12·9	115 112	118 115	94 99	11 11	- 20 - 19	-26 -25
O(2)	obs. calc.	11·4 11·7	105 103	116 115	71 77	3 3	-7 -6	12 10
N(1)	obs. calc.	9∙4 10∙3	92 91	77 79	89 89	$-6 \\ -5$	$-2 \\ -1$	1 3
N(2)	obs. calc.	11·4 11·2	102 102	122 123	80 83	$-10 \\ -8$	7 6	-12 -11
C(1)	obs. calc.	10∙1 10∙4	117 114	122 124	75 78	5 7	$-6 \\ -4$	$-3 \\ -2$
C(2)	obs. calc.	8∙5 9∙0	83 81	88 89	74 79	4 4	-4 -2	$-3 \\ -2$

Discussion

Each Cd coordinates octahedrally four S atoms lying in a plane containing Cd, and two oxygen atoms from two HCOO⁻ groups, *trans* to the S plane (Figs. 1 and 2). There are two non-equivalent Cd–S distances; (when the coordinates are not indicated the atom is at x, y, z):

Cd-S
$$2.740 \pm 0.008$$
 Å
Cd-S $(x, y, z-1)$ 2.709 ± 0.008 .

These distances cannot be considered significantly different:

$$t_0 = (l_1 - l_2)/(\sigma_1^2 + \sigma_2^2)^{\frac{1}{2}} = 2.75$$
.

The distance

$Cd - O(1) = 2.28 \text{ Å} \pm 0.02 \text{ Å}$

is in good agreement with those already found in other compounds, e. g. in bisacetamide-cadmium chloride, 2·23 Å (Cavalca, Nardelli & Coghi, 1957), in bisureacadmium chloride, 2·28 Å (Nardelli, Cavalca & Fava, 1957), in monomethylurea-cadmium chloride, 2·18 Å (Nardelli, Coghi & Azzoni, 1958), in bisbiuret-cadmium chloride, 2·34 Å (Cavalca, Nardelli & Fava, 1960).

The octahedra are linked in endless chains running along [001], with a twofold axis along the chain axis, and two S atoms shared by two adjacent octahedra. These octahedra are slightly distorted, as can be seen from the values of the angles on Cd:

S-Cd-S (\bar{x}, \bar{y}, z)	$87.0\pm0.2^{\circ}$
S-Cd-S(x, y, z-1)	92.4 ± 0.2
$S(x, y, z-1)-Cd-S(\bar{x}, \bar{y}, z-1)$	88.2 ± 0.2
S-Cd-O(1)	87·6 <u>+</u> 0·8
O(1)–Cd–S(\bar{x}, \bar{y}, z)	$82 \cdot 3 \pm 0 \cdot 8$
O(1)-Cd-S(x, y, z-1)	97·7 ± 0·8
$O(1)-Cd-S(\bar{x}, \bar{y}, z-1)$	92·4 <u>+</u> 0·8

The thiourea molecule is planar, the least-squares equation of the plane being:

0.4657 x + 0.2054 y - 0.8608 z + 1.1019 = 0.

The e.s.d.'s are such that distances and angles are not significantly different from those found in uncoordinated thiourea:

		Thourea
Bisthiourea-	(Kunchur &	
form	Truter, 1958)	
S-C(1)	1∙76 <u>+</u> 0∙02 Å	1·71 ± 0·01 Å
C(1) - N(1)	1.29 ± 0.04	$\frac{1.33+0.01}{1.33+0.01}$
C(1) - N(2)	1.30 ± 0.04)
S-C(1)-N(1)	$120.1 \pm 2.5^{\circ}$	
S-C(1)-N(2)	119.6 ± 2.0	$122.2 \pm 0.6^{\circ}$
N(1)-C(1)-N(2)	120.4 ± 2.6	115.6 ± 1.1 .

Fig. 3. Stereographic projection of the environment of (a) N(1) viewed down N(1)-C(1), (b) N(2) viewed down N(2)-C(1), (c) C(2) viewed down H(1)-C(2).

The same conclusion holds for the HCOO⁻ group when compared with formic acid:

Bisthiourea- forma	Formic acid (Kwei & Curl, 1960)	
C(2)-O(1)	1·28 ± 0·04 Å	1·343 Å
C(2) - O(2)	1.21 ± 0.04	1.202
O(1)-C(2)-O(2)	$125 \cdot 8 \pm 3 \cdot 2^{\circ}$	124° 53′

Direct location of H atoms is impossible owing to the presence of the heavy cadmium atom. Nevertheless, a set of reasonable coordinates can be deduced assuming a trigonal distribution for the $-NH_2$ and $HCOO^-$ groups and the values N-H=1.03 and C-H=1.07 Å (*Tables of Interatomic Distances and Configuration in Molecules and Ions*, 1958). These coordinates are listed in Table 5.

Table 5. Postulated hydrogen fractional coordinates

	x/a	y/b	z/c
H(1)	0.398	0.056	-0.014
H(2)	-0.064	0.159	0.428
H(3)	0.002	0.247	0.598
H(4)	0.220	0.253	0.876
H(S)	0.376	0.171	0.924

From the stereographic projections of Fig. 3 it can be shown that the angular criterion for hydrogenbonding (Donohue, 1952; Fuller, 1959) is adequately fulfilled for the following contacts:

$N(1) \cdots O(1)$	2·80 <u>+</u> 0·04 Å
$N(2) \cdots O(2) (x+1, y, 1+z)$	2.79 ± 0.04 .

The weaker contacts:

N(2) · · · · O(2) $(x + \frac{1}{2}, \frac{1}{2} - y, 1 - z)$	2∙94±0∙03 Å
N(1) · · · · O(2) $(x + \frac{1}{2}, \frac{1}{2} - v, 1 - z)$	3.03 + 0.05

correspond to a greater bond distortion.

The coordination of O(2), shown in Fig. 4, is represented by a severely distorted tetrahedron.

The orientation of the plane of thiourea is determined mainly by the $N(1)-H(2)\cdots O(1)$ hydrogen

Fig. 4. Stereographic projection of the environment of O(2) viewed down O(2)-C(2).

bond. This interaction and the packing in the chain can account for the departure of the angles around S from the tetrahedral value:

$$\begin{array}{lll} Cd-S-Cd & 92\cdot4^{\circ} \\ Cd-S-C(1) & 115\cdot2 \\ Cd-S & (\bar{x}, \ \bar{y}, \ z-1)-C(1) & (\bar{x}, \ \bar{y}, \ z-1) & 102\cdot0 \ . \end{array}$$

Packing of the chains is determined by $N \cdots O(2)$ contacts involving two different HCOO⁻ groups in adjacent chains.

This work was made possible by financial support from the Consiglio Nazionale delle Ricerche.

References

ALBRECHT, G. (1939). Rev. Sci. Instrum. 10, 221.

- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOP-STRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). Acta Cryst. 8, 478.
- CAVALCA, L., NARDELLI, M. & COGHI, L. (1957). Nuovo Cim., [X], 6, 278.
- CAVALCA, L., NARDELLI, M. & FAVA, G. (1960). Acta Cryst. 13, 594.

CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.

DAWSON, B. (1960). Acta Cryst. 13, 403.

- DONOHUE, J. (1952). J. Phys. Chem. 56, 502.
- FULLER, W. (1959). J. Phys. Chem. 63, 1705.
- KNOBLER, C. B., OKAYA, Y. & PEPINSKY, R. (1959). Z. Kristallogr. 111, 385.
- KUNCHUR, N. R. & TRUTER, M. R. (1958). J. Chem. Soc., p. 2551.
- KWEI, G. H. & CURL, R. F. (1960). J. Chem. Phys. 32, 1952.
- NARDELLI, M., BRAIBANTI, A. & FAVA, G. (1957). Gazz. chim. ital. 87, 1209.
- NARDELLI, M., CAVALCA, L. & FAVA, G. (1957). Gazz. chim. ital. 87, 1232.
- NARDELLI, M., COGHI, L. & AZZONI, G. (1958). Gazz. chim. ital. 88, 235.
- NARDELLI, M. & FAVA, G. (1959). Acta Cryst. 12, 727.
- NARDELLI, M. & FAVA, G. (1960). Ric. Sci. 30, 898.
- NARDELLI, M., FAVA, G. & BOLDRINI, P. (1962). Gazz. chim. ital. 92, 1392.
- Nardelli, M., Fava, G. & Branchi, G. (1960). Acta Cryst. 13, 898.
- PEYRONEL, G. & PIGNEDOLI, A. (1962). Proc. 7 ICCC, 81.
- PHILLIPS, D. C. (1956). Acta Cryst. 9, 819.
- Tables of Interatomic Distances and Configuration in Molecules and Ions (1958). Special Publication No. 11. London: The Chemical Society.
- THOMAS, L. H. & UMEDA, K. (1957). J. Chem. Phys. 26, 293.

Acta Cryst. (1965). 18, 623

The Structure of the Crystalline Intermolecular Complex: Guanidinium Chloride–Disordered N, N-Dimethylacetamide (3:1)

BY D. J. HAAS, D. R. HARRIS AND H. H. MILLS

Biophysics Department, Roswell Park Memorial Institute Buffalo, New York, U.S.A.

(Received 1 June 1964)

The crystalline complex guanidinium chloride–N,N-dimethylacetamide is monoclinic, space group I2/a, with lattice constants:

$$a = 23.47, b = 14.90, c = 11.95 \text{ Å}; \beta = 90.95^{\circ}$$

The crystal structure was solved by the heavy atom method and consists of a framework of guanidinium chloride with cylindrical cavities parallel to the c axis. The three guanidinium chloride molecules were refined by least-squares methods to an R value of 0.16. The disordered dimethylacetamide molecules lie in the cylindrical cavities (average diameter about 6 Å) that are continuous through the crystal.

Introduction

A program of study of the crystal structures of molecular complexes involving effective protein denaturants and model compounds has been undertaken in this laboratory in an effort to show specific interactions between protein denaturing agents and amino acid residue-like compounds. A number of these molecular complexes have been obtained; their significance has been discussed elsewhere (Bello & Haas, 1965).

Originally, it was expected that the complex of guanidinium chloride (GC1) with N,N-dimethylace-

tamide (DMA) would show interactions between the ions and the DMA, a proline residue analogue. After the crystal structure had been determined, however, it was apparent that no specific bonding could be attributed to the DMA molecules in the crystal.

Experimental

Crystals of the GCl–DMA complex were produced by saturating warm DMA (100 °C) with GCl and allowing the solution to cool slowly. Crystals used for the X-ray analysis were mounted in glass capillaries direct-